تبلیغات
مدیریت - مطالب ابر نقشه برداری

مدیریت

مدیریت اجرایی و مهندسی نقشه برداری

دفتر چه راهنمای توتال مدل سندینگ STS-750

STS-750



سیستم های تصویر در هیدروگرافی

سیستم تصویر در مورد روش های ترسیم عوارض روی سطح بیضوی

مقایسه که سه بعدی و منحنی شکل است و انتقال آن بر روی صفحه

نقشه که دو بعدی و مستوی است بحث می کند .



  • نظرات() 
  • دستورکار کارگاه نقشه برداری


    مجموعه حاضر در برگیرنده مباحث عمومی نقشه برداری میباشد که جهت آشنایی دانشجویان با اصول و مبانی
    دستورکار نقشه برداری گردآوری گردیده است. در این دستور کار در ابتدای هرفصل مباحث تئوری به همراه
    فرمولها و مثالهای مربوطه توضیح داده شده و بعد از معرفی تجهیزات مورد نیاز، به شرح کار عملی پرداخته و
    نکات مهمی در مورد ایمنی دستگاه و کاربر ذکر گردیده است.


    دانلود



  • نظرات() 
  • دستور العمل نقشه های اجرایی (سازمان نقشه برداری کشور )

    بخش اول
    گردش كار
    -1 تنظیم موافقت نامه
    پس از تنظیم قرار داد فی مابین كارفرما و مشاور ، كارفرما طی یك نامه رسمی یك نسخه از اصل قرارداد را ب ه سازمان ( سازمان
    نقشه برداری تهران یا شعب ) ارسال می كند. در سازمان پس از بررسی مفاد قراردا د ، موافقت نامه نظارتی تنظیم و به كارفرما ارسال
    می شود ( در صورت ی كه مفاد قرارداد و آیتم های قید شده در قرارداد با دستورالعمل های نقشه برداری مغایرتی داشته باشد موارد
    فوق با كارفرما حل و فصل می شود). به منظور تسریع در امر نظارت ضروری است كارفرمایان موافقت نامه ارسالی را امضا كرده و
    به سازمان ارسال نمایند


    دانلود



  • نظرات() 
  • نرم افزار مهندسی نقشه برداری COLUMBUS


    Download



  • نظرات() 
  • آموزش نرم افزار کاربردی CIVIL 3D 2010

    آموزش نرم افزار کاربردی  CIVIL 3D 2010


    ادامه دانلود



    وری رقومی نقشه برداری امكان تولید محصولات مختلف اطلاعات مكانی را از داده های اولیه امكان پذیر می سازد. Ĥ فن
    مجموعه حاضر نیز این موضوع را مد نظر قرار داده و به تناسب موضوع به بند های این استاندارد و دستورالعمل های مورد
    نیاز ارجاع می دهد.
    3 نشان دهنده ترتیب پردازش های لازم و ارتباط آنها با یكدیگر است. نكات زیر در خصوص -1- نمودار فرایند تولید در بند 1
    3 قابل توجه می باشد: -1- نمودار بند 1
    در بدو امر، باید نوع محصول یا محصولات مد نظر مشخص شوند و متناسب با آن از قسمت های مختلف این مجموعه
    استفاده گردد.
    DGN, ) در هنگام تعیین محصول، لازم است كه مسائل نرم افزاری نیز مد نظر قرار گیرد. باید فرمت تولید اطلاعات
    و تعداد ابعاد مكانی (دو بعدی یا سه بعدی) بودن فایل ها مد نظر قرار گرفته و تعیین شوند. ( DWG,...
    تعریف هر كدام از محصولات در بخش بعد آمده است.
    در انتخاب مسیر فرآیند و جریان كار دقت شود، زیرا بعضی مراحل بازگشت پذیر نیستند.

    دانلود



    نشریه مهندسی نقشه بر داری

    نشریه علمی - تر ویجی مهندسی نقشه برداری و اطلاعات مکانی
    دوره پنجم شماره 1 اسفند 92


    نشریه مهندسی نقشه برداری و اطلاعات مکانی یک فصلنامه تخصصی دو زبانه(فارسی - انگلیسی )متعلق
    به انجمن علمی مهندسی نقشه برداری وژئوماتیک ایران است که با همکاری اساتید کشور در این زمینه منتشر
    می شود زمینه های مورد علاقه و فعالیت این نشریه شامل علوم اطلاعات مکانی ژئوماتیک مهندسی نقشه برداری
    با تخصص های ژئودزی فتوگرامتریسنجش از دور سامانه های اطلاعات مکانی و کاربرد های آن ها در زمینه های
    گوناگون از جمله علوم زمین منابع طبیعی محیط زیست و مدیریت شهری است


    ادامه دانلود



    نشریه

    نشریه علمی - ترویجی مهندسی نقشه برداری و اطلاعات مکانی دوره چهارم شماره 4
    آذرماه 1392

    نشریه مهندسی نقشه برداری و اطلاعات مکانی یک فصلنامه تخصصی دو زبانه(فارسی - انگلیسی )متعلق
    به انجمن علمی مهندسی نقشه برداری وژئوماتیک ایران است که با همکاری اساتید کشور در این زمینه منتشر
    می شود زمینه های مورد علاقه و فعالیت این نشریه شامل علوم اطلاعات مکانی ژئوماتیک مهندسی نقشه برداری
    با تخصص های ژئودزی فتوگرامتریسنجش از دور سامانه های اطلاعات مکانی و کاربرد های آن ها در زمینه های
    گوناگون از جمله علوم زمین منابع طبیعی محیط زیست و مدیریت شهری است .

    ادامه دانلود



    استاندارد نظارت سازمان نقشه برداری کشور

    این مجموعه شامل دو بخش 1-گردش کار بین مشاور و دستگاه نظارت و2-دستورالعمل اجرای پروژه های نقشه برداری می باشد که در آن سعی شده است کلیه بخش های تهیه نقشه و همچنین نحوه ارتباط با دستگاه نظارت و مراحل تحویل نقشه ها بطور مختصر بیانشود.

    ادامه دانلود



    Mathematical Foundation of Geodesy Selected Papers of Torben Krarup

    Linear Equations
    Introduction
    In the last years several methods for solving linear algebraic equations have
    been published. This chapter is not meant to be a more or less detailed survey
    of these methods, rather, its purpose is to give the reader such a knowledge
    of a few special methods or techniques that he will be able to make a series of
    programs for his computer for solving linear equations of the types he is likely
    to meet with in practice. We find it important to point out that one must
    have a series of programs for these problems and not merely one standard
    program because the problems which occur in practice vary considerably with
    respect to dimensions, numerical behaviour, symmetrical pattern etc. The
    cardinal point in our investigation has been the numerical strength of the
    methods, considering that large systems of equations are often ill-conditioned,
    and it is of little consolation to use a method that uses the central and the
    peripheral storages of a computer in an elegant way if the numerical result of
    the computation is drowned in rounding errors.

    دانلود



    Bernhard Hofmann-Wellenhof Helmut Moritz Physical Geodesy SpringerWienNewYork

    فیزیکال ژئودزی

    دانلود



    Satellite Geodesy 2nd completely revised and extended edition

    ژئودزی ماهواره ای

    Preface
    Methods of satellite geodesy are increasingly used in geodesy, surveying engineering,
    and related disciplines. In particular, the modern development of precise and operational
    satellite based positioning and navigation techniques have entered all fields of
    geosciences and engineering. A growing demand is also evident for fine-structured
    gravity field models from new and forthcoming satellite missions and for the monitoring
    of Earth’s rotation in space. For many years I have had the feeling that there is a
    definite need for a systematic textbook covering the whole subject, including both its
    foundations and its applications. It is my intention that this book should, at least in
    part, help to fulfill this requirement.
    The material presented here is partly based on courses taught at the University of
    Hannover since 1973 and on guest lectures given abroad. It is my hope that this material
    can be used at other universities for similar courses. This book is intended to serve
    as a text for advanced undergraduates and for graduates, mainly in geodesy, surveying
    engineering, photogrammetry, cartography and geomatics. It is also intended as a
    source of information for professionals who have an interest in the methods and results
    of satellite geodesy and who need to acquaint themselves with new developments. In
    addition, this book is aimed at students, teachers, professionals and scientists from
    related fields of engineering and geosciences, such as terrestrial and space navigation,
    hydrography, civil engineering, traffic control, GIS technology, geography, geology,
    geophysics and oceanography. In line with this objective, the character of the book
    falls somewhere between that of a textbook and that of a handbook. The background
    required is an undergraduate level of mathematics and elementary mathematical statistics.
    Because of rapid and continuous developments in this field, it has been necessary
    to be selective, and to give greater weight to some topics than to others. Particular
    importance has been attached to the fundamentals and to the applications, especially
    to the use of artificial satellites for the determination of precise positions. A comprehensive
    list of references has been added for further reading to facilitate deeper and
    advanced studies.
    The first edition of this book was published in 1993 as an English translation and
    update of the book “Satellitengeodäsie”, that was printed in the German language in
    1989. The present edition has been completely revised and significantly extended. The
    fundamental structure of the first edition has been maintained to facilitate continuity
    of teaching; however, outdated material has been removed and new material has been
    included. All chapters have been updated and some have been re-written. The overall
    status is autumn 2002 but some of the most recent technological developments to
    March 2003 have been included.
    Extensions and updates mainly pertain to reference coordinate systems and reference
    frames [2.2], signal propagation [2.3], directions with CCD technology [5.2], the
    Global Positioning System (GPS) and GNSS [7], satellite laser ranging [8], satellite
    viii Preface
    altimetry [9], gravity field missions [10] and applications [12]. In particular, the chapter
    on GPS and GNSS [7] has been almost completely re-written and now covers about
    200 pages. Together with chapters [2], [3], and [12], it forms a comprehensive GPS
    manual on its own. New technological developments of the space and user segment
    are included, as is the current state of data analysis and error budget. Differential GPS
    and permanent reference networks are now treated in a comprehensive section of their
    own [7.5]. GLONASS and the forthcoming GALILEO are included in a new section
    on GNSS [7.7].
    Gravity field missions like CHAMP, GRACE and GOCE, because of their increasing
    importance, are dealt with in a new chapter [10]. VLBI, together with the new
    inclusion of interferometric SAR, form another new chapter [11]. Coverage of historical
    techniques like photographic camera observations [5] and Transit Doppler [6] has
    been considerably reduced. The basic principles, however, are still included because
    of their historical importance and because they are shared by new technologies like
    CCD cameras [5.2] and DORIS [6.7]. The geodetic history of Transit Doppler techniques,
    in addition, is an excellent source for understanding the evolution and basic
    concepts of the GPS. The chapter on applications, now renumbered [12], has been
    updated to include modern developments and a new section on the combination of
    geodetic space techniques [12.5]. International services of interest to satellite geodesy
    have been included, namely the IGS [7.8.1], the ILRS [8.5.1], the IVS [11.1.3], and
    the IERS [12.4].
    The bibliography has been updated and expanded considerably by adding an increased
    number of English language references. The total number of references is now
    reaching 760, about half of which are new in this edition.
    Many of the examples within this book are based on field projects and research
    work carried out in collaboration with my graduate students, doctorate candidates and
    scientific colleagues at the University of Hannover over more than 20 years. I would
    like to thank all these individuals for their long standing cooperation and the many
    fruitful discussions I have had with them. In addition, the help of the staff at the Institut
    für Erdmessung is gratefully acknowledged. Most figures have been redrawn by cand.
    geod. Anke Daubner and Dipl.-Ing.Wolfgang Paech.
    My sincere thanks for checking and correcting the English language go to
    Dr. Graeme Eagles of the Alfred Wegener Institut für Polar- und Meeresforschung,
    Bremerhaven. I should also like to thank the many colleagues from all over the world
    who helped to improve the book through their comments on the first edition, and the
    individuals and organizations who provided illustrations.
    Finallymygratitude goes tomywife Gisela for her never ending support and understanding.
    The publisher remained excellently cooperative throughout the preparation
    of this book. My cordial thanks go to Dr. Manfred Karbe, Dr. Irene Zimmermann,
    and the staff atWalter de Gruyter.
    Hannover, May 2003 Günter Seeber
    1 Introduction
    1.1 Subject of Satellite Geodesy
    Following the classical definition of Helmert (1880/1884), geodesy is the science of
    the measurement and mapping of the Earth’s surface. This definition includes the
    determination of the terrestrial external gravity field, as well as the surface of the
    ocean floor, cf. (Torge, 2001). Satellite Geodesy comprises the observational and
    computational techniques which allow the solution of geodetic problems by the use
    of precise measurements to, from, or between artificial, mostly near-Earth, satellites.
    Further to Helmert’s definition, which is basically still valid, the objectives of satellite
    geodesy are today mainly considered in a functional way. They also include, because
    of the increasing observational accuracy, time-dependent variations.
    The basic problems are
    1. determination of precise global, regional and local three-dimensional positions
    (e.g. the establishment of geodetic control)
    2. determination of Earth’s gravity field and linear functions of this field (e.g. a
    precise geoid)
    3. measurement and modeling of geodynamical phenomena (e.g. polar motion,
    Earth rotation, crustal deformation).
    The use of artificial satellites in geodesy has some prerequisites; these are basically
    a comprehensive knowledge of the satellite motion under the influence of all acting
    forces as well as the description of the positions of satellites and ground stations in suitable
    reference frames. Consequently satellite geodesy belongs to the domain of basic
    sciences. On the other hand, when satellite observations are used for solving various
    problems satellite geodesy can be assigned to the field of applied sciences. Considering
    the nature of the problems, satellite geodesy belongs equally to geosciences and
    to engineering sciences.
    By virtue of their increasing accuracy and speed, the methods and results of satellite
    geodesy are used more and more in other disciplines like e.g. geophysics, oceanography
    and navigation, and they form an integral part of geoinformatics.
    Since the launch of the first artificial satellite, SPUTNIK-1, on October 4, 1957,
    satellite geodesy has developed into a self-contained field in geodetic teaching and
    research, with close relations and interactions with adjacent fields (Fig. 1.1). The
    assignments and contents are due to historical development.
    In Geodetic Astronomy, based on the rules of Spherical Astronomy, the orientation
    of the local gravity vector (geographical longitude, geographical latitude), and the
    astronomical azimuth A of a terrestrial mark are determined from the observation of
    natural celestial bodies, particularly fixed stars. By Gravimetry we mean the measurement
    of gravity (gravity intensity g) which is the magnitude of the gravity acceleration
    vector g (Torge, 1989).


    دانلود



    Geodesy and Gravity

    Chapter 1
    Introduction
    1.1 Introduction
    There are three required geophysics courses in the University of Colorado geophysics
    program:
    1. Seismology: seismic waves, earthquakes, earth structure.
    2. Geodesy and gravity. (This course.)
    3. Heat
    ow, mantle convection,
    uid dynamics, the earth's magnetic eld.
    Plate tectonics is the unifying theory for most of modern-day geophysics and, to a
    large extent, geology. According to this theory, the earth's surface is composed of about
    twenty disjoint plates which move with respect to each other. This motion is responsible,
    directly or indirectly, for most surface features (e.g. ocean basins, mountains, etc.) and
    for earthquakes and volcanos.
    The driving force for plate tectonics is mantle convection of some sort: the plates are
    thermal boundary layers of convective cells in the mantle (over long time periods, the
    mantle behaves as a viscous
    uid). But the details are not yet well understood. People
    have deduced the rate of motion averaged over millions of years by looking at magnetic
    anomalies in material on the sea
    oor. The motion of the plates on a year-to-year time
    1
    2 CHAPTER 1. INTRODUCTION
    scale is just now beginning to be observed. In fact, one of the goals of modern geodesy
    is to actually detect the year-to-year motion. Is it the same as the long-term mean? Do
    the plates move rigidly? Etc.
    1.2 Geodesy
    Geodesy has a reasonable claim to being the oldest branch of geophysics. Originally it
    was solely concerned with global surveying. Its primary goal was, and probably still is, to
    tie local survey nets together by doing careful surveying over long distances. Geodesists
    tell local surveyors where their lines are with respect to the rest of the world. That
    includes telling them their elevation above sea level. This is still the major function of
    most geodesists, most of whom are not geophysicists.
    To measure long baselines and to determine global positions you need:
    1. more accurate observing instruments than in surveying | although frequently surveyors
    and geodesists use the same instruments.
    2. complicated mathematical techniques to take into account things like the earth's
    curvature and, especially, the gravity eld.
    3. measurements of the gravity eld.
    The e ects of the gravity eld are especially dicult to deal with. Why should gravity
    enter in? It's because many geodetic instruments use gravity as a reference. For example,
    when geodesists or surveyors say a surface is horizontal, what they really mean is that
    it is a surface of constant gravitational potential (think of the way a carpenter's level
    works, for example). So, geodesists have always had to measure gravity | in addition
    to relative positions, which is why gravity has historically come under the heading of
    geodesy.
    Out of these gravity observations came the rst useful, modern, geophysical interpretations
    of any sort. This was the development of the idea of isostasy around 1840. We'll
    get into this, later.
    1.3. COURSE ORGANIZATION 3
    Nowadays, what can gravity and point positioning observations do for geophysicists?
    Brie
    y, static gravity observations (that is, observations of the time-independent eld)
    give information on strength within the earth (the earth's surface bends under loads, with
    resulting e ects on gravity), on composition near the earth's surface (mineral prospectors
    use gravity), and on long term dynamical processes within the earth (density contrasts
    associated with mantle convection/plate tectonics, and postglacial rebound).
    Static (time-independent values) of positions have not given much useful information.
    Recently, though, new geodetic techniques have begun to give useful observations of
    time-dependent gravity variations and positions of surface points. This turns out to be
    really exciting to geophysicists, because it allows people to be able to see the plates move
    and deform in real time.


    download



    THREE-DIMENSIONAL GEODETIC NETWORK ADJUSTMENT

    23.1 INTRODUCTION
    With the advent of total station instruments, survey data are being collected in three dimensions.
    Thus it is advantageous to develop an adjustment model that works in three dimensions to create a
    holistic approach to the adjustment of traditional surveying data. The observational data consists of
    horizontal angles, vertical angles, azimuths, and slope distances. It is also possible to include
    differential leveling in the model. Since all data are collected on the earth’s surface, the local
    geodetic coordinate system provides a natural system in which to perform the adjustment.

    download





    • کل صفحات:3  
    • 1
    • 2
    • 3
    •   

    محسن یعقوبی


    آخرین پست ها


    آمار وبلاگ

    • کل بازدید :
    • بازدید امروز :
    • بازدید دیروز :
    • بازدید این ماه :
    • بازدید ماه قبل :
    • تعداد نویسندگان :
    • تعداد کل پست ها :
    • آخرین بازدید :
    • آخرین بروز رسانی :